YOLO:darkflow [hard to train, fail to run demo]
Dependencies
Python3, tensorflow 1.0, numpy, opencv 3.
Source Code
https://github.com/thtrieu/darkflow
Install
sudo apt-get install python3-numpy
sudo pip3 install .
python3 setup.py build_ext --inplace
#gedit darwflow/flow
change "#! /usr/bin/env python" to "#! /usr/bin/env python3"
source set-opencv3-python3.sh
./flow --h
YOLO:YOLOv1 tensorflow
Source Code
https://github.com/hizhangp/yolo_tensorflow
YOLO: YOLOv2 Chainer
Source Code
https://github.com/leetenki/YOLOv2
YOLO [tf-slim]
https://github.com/ruiminshen/yolo-tf
YAD2K [keras]
https://github.com/allanzelener/YAD2K
TensorBox [hard to train, fail to run demo]
Source Code
https://github.com/TensorBox/TensorBox
Faster-RCNN
PVANet [run demo failed!]
https://github.com/sanghoon/pva-faster-rcnn
py-faster-rcnn [run demo okay! but not good to train]
https://github.com/rbgirshick/py-faster-rcnn
- donot use master version of caffe-fast-rcnn
caffe-fast-rcnn git:(0dcd397)
- donot use cudnn if you use cuda-8.0
# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1
- donot pay attention to make test if error happend
src/caffe/test/test_smooth_L1_loss_layer.cpp:11:35:
fatal error: caffe/vision_layers.hpp: No such file or directory
- donot pay attention to make pytest if error happend
AttributeError: 'SimpleParamLayer' object has no attribute 'param_str'
AttributeError: 'LayerParameter' object has no attribute 'shape'
FAILED (errors=4)
Makefile:518: recipe for target 'pytest' failed
make: *** [pytest] Error 1
- cd lib and make
/home/yzbx/git/gnu/py-faster-rcnn/lib
Faster-RCNN [tf]
https://github.com/endernewton/tf-faster-rcnn
not good to train own dataset
Support for train-and-validationls
Support for resuming training
Support for visualization
Good For Small Object Detection For keeping the small proposals ( < 16 pixels width/height)
https://github.com/smallcorgi/Faster-RCNN_TF
not good to train own dataset.
This is an experimental Tensorflow implementation of Faster RCNN - a convnet for object detection with a region proposal network.
https://github.com/CharlesShang/TFFRCNN
Training on KITTI detection dataset
Hard Example Mining
Data Augment
PVANet
requirement
1. Update your -arch in setup script to match your GPU
cd tf-faster-rcnn/lib
# Change the GPU architecture (-arch) if necessary
vim setup.py
GPU Model | Architecture |
---|---|
TitanX (Maxwell/Pascal) | sm_52 |
GTX 960M | sm_50 |
GTX 1080 (Ti) | sm_61 |
Grid K520 (AWS g2.2xlarge) | sm_30 |
Tesla K80 (AWS p2.xlarge) | sm_37 |
2. Set environment to tensorflow-gpu=1.0
conda install tensorflow-gpu=1.0
conda install cython matplotlib scipy Pillow pyyaml tqdm scikit-image
pip install easydict opencv_python
3. Set gcc for tensorflow
tensorflow.python.framework.errors_impl.NotFoundError: TFFRCNN/lib/roi_pooling_layer/roi_pooling.so: undefined symbol: _ZN10tensorflow7strings6StrCatB5cxx11ERKNS0_8AlphaNumE
vim lib/make.sh
## if you install tf using already-built binary, or gcc version 4.x, uncomment the two lines below
... D_GLIBCXX_USE_CXX11_ABI=1 ...
# ... D_GLIBCXX_USE_CXX11_ABI=0 ...
4. Set --restore 0
AttributeError: 'NoneType' object has no attribute 'model_checkpoint_path'
python ./faster_rcnn/train_net.py --gpu 0 --weights /media/sdb/VGG_imagenet.npy
--imdb voc_2007_trainval --iters 70000 --restore 0 --cfg ./experiments/cfgs/faster_rcnn_end2end.yml
--network VGGnet_train --set EXP_DIR exp_dir
issue: 不收敛
https://github.com/kevinjliang/tf-Faster-RCNN
test on mnist, not good to use, bad implementation
Faster-RCNN [keras]
https://github.com/yhenon/keras-frcnn
非常好用的一个版本,代码简洁,自行训练也行方便,不需要预先下载VGG,ResNet等模型参数,keras有自带的。
R-FCN [base on faster-rcnn]
https://github.com/Orpine/py-R-FCN
SSD [tf-slim]
https://github.com/balancap/SSD-Tensorflow
SSD [keras]
https://github.com/rykov8/ssd_keras
SqueezeDet [tensorflow]
https://github.com/BichenWuUCB/squeezeDet
Other
https://github.com/DeepRNN/object_detection
https://deepsense.io/region-of-interest-pooling-in-tensorflow-example/
https://github.com/deepsense-io/neptune-examples/tree/1.5/python/roi-pooling